Preview

Open Education

Advanced search

Application of Artificial Intelligence for the Implementation of Mismatch Negativity Potential Algorithms in Industrial Automated Predictive Maintenance Systems

https://doi.org/10.21686/1818-4243-2025-3-11-21

Abstract

Problem statement. One of the urgent problems of industrial automation is that the operation of the few predictive maintenance systems available on the Russian market is usually based on the collection and analysis of equipment data without considering the joint impact of internal and external factors. In the current economic conditions, it is necessary to make a reasonable choice and apply new technologies of artificial intelligence for research and realization of basic principles of mismatch negativity potential, which will open new horizons for increasing efficiency and reliability of industrial automated systems of predictive or prescriptive maintenance of multistage technological processes. Modeling of automatic reactions to environmental changes and prediction of failures will allow to develop adaptive systems that will significantly reduce the risks of failures and accidents, as well as contribute to optimization of production resources and reduction of operating costs.

Purpose. To study the possibility of using artificial intelligence technologies to implement algorithms based on the potential of mismatch negativity (MMN) and the possibility of their application in industrial automated systems of predictive or prescriptive maintenance, as well as to develop a basic MMN algorithm and implement it in the Python programming language.

Results. An algorithm implementing the basic principles of mismatch negativity potential has been developed. The practical necessity of using such an algorithm, which is based on neurophysiological mechanisms of sensory information processing in the human brain, for detecting anomalies in the operation of industrial equipment caused by external factors such as temperature, humidity, vibrations, and electromagnetic interference was determined, which allows solving the following tasks of industrial automation: anomaly detection, modeling of environmental impact, optimization of operational processes, prediction of failures, adaptation to changes in the environment. The basic architecture of the automated system is proposed, which takes into account the need to use software algorithms of mismatch negativity potential. It consists of modules of data verification, model training, anomaly detection, predictive model, visualization and module of integration with other industrial information and automated systems. The paper also presents the program code for the implementation of the basic MMN algorithm in Python language.

Practical significance. The results of the study can be used to design industrial automated systems of predictive or prescriptive maintenance, in which accuracy and decision time play an important role.

About the Author

Alexander Yu. Chesalov
Atlansis Software Systems Limited Liability Company
Russian Federation

Alexander Y. Chesalov, 

Tver.



References

1. Jay Lee, Edzel Lapira, Behrad Bagheri, Hungan Kao. Recent advances and trends in predictive manufacturing systems in big data environment // Manufacturing Letters. 2013. Т. 1. № 1. С. 38–41. DOI: 10.1016/j.mfglet.2013.09.005. (Дата обращения: 18.03.2025).

2. Fei Tao, Qinglin Qi, Ang Liu, Andrew Kusiak. Data-driven smart manufacturing // Journal of Manufacturing Systems. 2018. Т. 48. С. 157–169, DOI: 10.1016/j.jmsy.2018.01.006. (Дата обращения: 18.03.2025).

3. Zhang Y., Huang T. & Bompard E.F. Big data analytics in smart grids: a review // Energy Informatics. 2018. № 1(1). DOI: 10.1186/s42162-018-0007-5. (Дата обращения: 18.03.2025).

4. Kusiak A. Smart manufacturing must embrace big data // Nature. 2017. № 544 (7648). С. 23–25. DOI: 10.1038/544023a. (Дата обращения: 18.03.2025).

5. Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, Marimuthu Palaniswami. Internet of Things (IoT): A vision, architectural elements, and future directions // Future Generation Computer Systems. 2013. Т. 29. № 7. С. 1645–1660. DOI: 10.1016/j.future.2013.01.010. (Дата обращения: 18.03.2025).

6. Jay Lee, Behrad Bagheri, Hung-An Kao. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems // Manufacturing Letters. 2015. № 3. С. 18–23. DOI: 10.1016/j.mfglet.2014.12.001. (Дата обращения: 18.03.2025).

7. Lihui Wang, Martin Törngren, Mauro Onori. Current status and advancement of cyberphysical systems in manufacturing // Journal of Manufacturing Systems. 2015. Т. 37(2). С. 517–527. DOI: 10.1016/j.jmsy.2015.04.008. (Дата обращения: 18.03.2025).

8. Yuqian Lu, Xun Xu, Lihui Wang. Smart manufacturing process and system automation – A critical review of the standards and envisioned scenarios // Journal of Manufacturing Systems. 2020. Т. 56. С. 312–325. DOI: 10.1016/j.jmsy.2020.06.010. (Дата обращения: 18.03.2025).

9. Zhou K., Liu T., & Zhou L. Industry 4.0: Towards future industrial opportunities and challenges. In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). 2015. С. 2147–2152. DOI: 10.1109/FSKD.2015.7382284. (Дата обращения: 18.03.2025).

10. Xu L. D., Xu E. L., & Li L. Industry 4.0: state of the art and future trends // International Journal of Production Research. 2018. № 56(8). С. 2941–2962. DOI: 10.1080/00207543.2018.1444806. (Дата обращения: 18.03.2025).

11. Susto G. A., Schirru A., Pampuri S., McLoone S., & Beghi A. Machine learning for predictive maintenance: A multiple classifier approach // IEEE Transactions on Industrial Informatics. 2015. № 11(3). С. 812–820. DOI: 10.1109/TII.2014.2349359. (Дата обращения: 18.03.2025).

12. Panagiotis Mallioris, Eirini Aivazidou, Dimitrios Bechtsis. Predictive maintenance in Industry 4.0: A systematic multi-sector mapping // CIRP Journal of Manufacturing Science and Technology. 2024. Т. 50. С. 80–103. DOI: 10.1016/j.cirpj.2024.02.003. 2024. (Дата обращения: 18.03.2025).

13. Andrew K.S. Jardine, Daming Lin, Dragan Banjevic. A review on machinery diagnostics and prognostics implementing condition-based maintenance // Mechanical Systems and Signal Processing. 2006. Т. 20. № 7. С. 1483–1510. DOI: 10.1016/j.ymssp.2005.09.012. (Дата обращения: 18.03.2025).

14. Zheng J, Meister M. The unbearable slowness of being: Why do we live at 10 bits/s? Neuron [Электрон. ресурс]. 2025. № 113(2). С. 192–204. Режим доступа: https://arxiv.org/html/2408.10234v2. (Дата обращения: 18.03.2025).

15. Дорогина О.И. Нейрофизиология [Электрон. ресурс]. Екатеринбург: Уральский федеральный университет, 2019. 100 с. Режим доступа: https://elar.urfu.ru/bitstream/10995/77151/1/978-5-7996-2619-8_2019.pdf (Дата обращения: 18.03.2025).

16. Манцулич В.В. История становления когнитивной психологии и развития взглядов на проблему когнитивных и метакогнитивных способностей личности // Вестник Московского городского педагогического университета. Серия «Педагогика и психология». 2022. № 16 (4). С. 90–102. DOI: 10.25688/2076-9121.2022.16.4.05.

17. Когнитивная психология / Под ред. В.Н. Дружинина, Д.В. Ушакова. М.: ПЕР СЭ, 2002. 479 с.

18. Вызванные потенциалы мозга (ВП) [Электрон. ресурс]. Режим доступа: https://cmi.to/вызванные-потенциалы/. (Дата обращения: 17.03.2025).

19. Березина И.Ю., Михайлов А.Ю., Горецкая Т.А. и др. Применение вызванных потенциалов, связанных с событием (Р300), у лиц, злоупотребляющих психоактивными веществами // Вопросы наркологии. 2020. № 12. С. 19–43. DOI: 10.47877/0234-0623_2020_12_19.

20. Guansong Pang, Chunhua Shen, Longbing Cao, and Anton van den Hengel. Deep Learning for Anomaly Detection: A Review // ACM Comput. Surv. 2020. Т. 1. № 1. DOI: 10.1145/3439950.

21. Шустов Д.И., Федотов И.А., Кряжкова Д.Ю. Использование потенциала негативности рассогласования при диагностике психозов: систематический обзор метаанализов [Электрон. ресурс] // ФГБУ «НМИЦ ПН им. В.П. Сербского» Минздрава России, 2024. Режим доступа: https://psychiatr.ru/files/magazines/2024_08_scp_2423.pdf. (Дата обращения: 17.03.2025).


Review

For citations:


Chesalov A.Yu. Application of Artificial Intelligence for the Implementation of Mismatch Negativity Potential Algorithms in Industrial Automated Predictive Maintenance Systems. Open Education. 2025;29(3):11-21. (In Russ.) https://doi.org/10.21686/1818-4243-2025-3-11-21

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-4243 (Print)
ISSN 2079-5939 (Online)