Preview

Open Education

Advanced search

Features of development and analysis of the simulation model of a multiprocessor computer system

https://doi.org/10.21686/1818-4243-2017-3-48-56

Abstract

Over the past decade, multiprocessor systems have been applied in computer technology. At present,multi-core processors are equipped not only with supercomputers, but also with the vast majority of mobile devices. This creates the need for students to learn the basic principles of their construction and functioning.One of the possible methods for analyzing the operation of multiprocessor systems is simulation modeling.Its use contributes to a better understanding of the effect of workload and structure parameters on performance. The article considers the features of the development of the simulation model for estimating the time characteristics of a multiprocessor computer system, as well as the use of the regenerative method of model analysis. The characteristics of the software implementation of the inverse kinematics solution of the robot are adopted as a workload. The given task consists in definition of turns in joints of the manipulator on known angular and linear position of its grasp. An analytical algorithm for solving the problem was chosen, namely, the method of simple kinematic relations. The work of the program is characterized by the presence of parallel calculations, during which resource conflicts arise between the processor cores, involved in simultaneous access to the memory via a common bus. In connection with the high information connectivity between parallel running programs, it is assumed that all processing cores use shared memory. The simulation model takes into account probabilistic memory accesses and tracks emerging queues to shared resources. The collected statistics reveal the productive and overhead time costs for the program implementation for each processor core involved. The simulation results show the unevenness of kernel utilization, downtime in queues to shared resources and temporary losses while waiting for other cores due to information dependencies. The results of the simulation are estimated by the regenerative method, which allows determining the average time spent searching for memory access in queues and the confidence intervals of these values for various degrees of trust. The given approach to the construction of the simulation model of a multiprocessor computer system and its analysis can be used to analyze the functioning of parallel computing systemsand for educational purposes for teaching students at the courses “Computer Systems” and “Simulation Modeling”.

 

About the Authors

O. M. Brekhov
Moscow Aviation Institute (National Research University)
Russian Federation
Dr. Sci. (Eng.), Head of department 304


G. A. Zvonareva
Moscow Aviation Institute (National Research University)
Russian Federation
Cand. Sci. (Eng.), Associate Professor


V. V. Ryabov
Moscow Aviation Institute (National Research University)
Russian Federation
Undergraduate


References

1. O.M. Brekhov, G.A. Zvonaryova, A.V. Korneenkova. Imitacionnoe modelirovanie: uchebnoe posobie – M.: Izdatel’stvo MAI, 2015. – 323 s.

2. Konyuh V.L., Ignat’ev YA. B., Zinov’ev V.V. Metody imitacionnogo modelirovaniya sistem. Primenenie programmnyh produktov. EHlektronnoe izd. zareg. v Federal’nom depozitarii ehlektronnyh izdanij, No 0320401123. Reg. svid. FGUP NTC «Informregistr» ot 06.09.2004. No 4753. 3. V.A. Signaevskij. YA.A. Kogan. Metody ocenki bystrodejstviya vychislitel’nyh sistem, Moskva: “Nauka”, 1990.

3. R. Humayu, Kh. David J. Morse. System Performance Analysis: Tools, Techniques, and Methodology // Dell magazin’s, 2001, Issue 3.

4. G. Latouche, V. Ramaswami, J. Sethuraman, K. Sigman, M.S. Squillante, D. Yao. Matrix-Analytic Methods in Stochastic Models. Springer Science & Business Media, 2012, 258 p.

5. A. Morecki, G. Bianchi, C. Rzymkowski. ROMANSY 11: Theory and Practice of Robots and Manipulators. – Berlin: Springer, 2014. – 432 c.

6. D. Tolani, A. Goswami, N. Badler. Real-Time Inverse Kinematics Techniques for Anthropomorphic Limbs – Philadelphia: University of Pennsylvania, 2000. – 36 c.

7. Lugovskoj K.S.,Kazanin P.I. Avtomatizaciya obratnoj zadachi kinematiki dvuhzvennogo manipulyatora. — Saratov: Institut upravleniya i social’no-ehkonomicheskogo razvitiya, 2016. — 8 s.

8. Volkov, N.N. Verifikaciya i validaciya IVS: predvaritel’noe proektirovanie i komp’yuternoe modelirovanie informacionno-vychislitel’nyh sistem – M.: TEKHPOLIGRAFCENTR, 2015. – 629 s.

9. S.L. Frenkel. Performance measurement methodology -and-tool for computer systems with migrating applied software, in BRICS Notes Series, NS-98-4, pp.83-86, Aalburg, Denmark, June 1998.

10. Orlov S.A., Cil’ker B.Ya. Organizaciya EHVM i sistem. 3-e izd. — SPb.: Piter, 2014. — 688 s.

11. Tomashevskij V., ZHdanova E. Imitacionnoe modelirovanie v srede GPSS. — M.: Bestseller, 2003. — 416 s.

12. Axelrod T. Effects of Synchronization Barriers on Multiprocessor Performance. Parallel Computing, 1986, №3, p. 129–140.

13. N.N. Ivanov, A.YU. Ignatushchenko, A.Yu. Mihajlov. Statisticheskoe Prognozirovanie Vremeni Vypolneniya Kompleksov Vzaimosvyazannyh Rabot v Mikroprocessornyh Vychislitel’nyh Sistemah. Avtomatika i Telemekhanika, 2005, № 6. s. 89—103.

14. Tannenbaum EH., Ostin T. Arhitektura komp’yutera. — SPb.: Piter, 2013. — 816s.

15. S.C. Allmaier, M. Kowarschik, G. Horton. State space construction and steady-state solution of GSPNs on a shared-memory multiprocessor // Proc. 7th Int. Workshop on Petri Nets and Performance Models (PNPM’97), June 1997, St. Malo, France, p. 112-121.

16. Smelyanskij R.L. Ob invariante povedeniya programm // Vestnik MGU, ser.15, Vychisl. matem. i kibern., 1990, №4, s. 54–60.

17. S.L. Frenkel. Random Summation and its Application to the Performance Modelling Computer Systems // Proceedings of 17th European simulation multiconference ESM2003, June, 2003, England, p. 278–283.

18. D.V. Kalinichenko, A.P. Kapitonova, N.V. YUshchenko. Metody i sredstva prognozirovaniya vremeni vypolneniya posledovatel’nyh programm. // Metody matematicheskogo modelirovaniya MGU, 1997.

19. M. Krehjn, O. Lemuan. Vvedenie v regenerativnyj metod analiza modelej. – M.: Nauka, 1982 – 104 s.

20. R.S. Nekrasova. Regenerativnoe ocenivanie i ego primenenie k sistemam s konechnym buferom. Avtoreferat dissertacii. Institut prikladnyh matematicheskih issledovanij Karel’skogo nauchnogo centra Rossijskoj akademii nauk. Petrozavodsk, 2015. 124 s.

21. L.V. Potahina. Analiz stacionarnosti stohasticheskih modelej telekommunikacionnyh sistem metodami teorii vosstanovleniya. Avtoreferat dissertacii. Institut prikladnyh matematicheskih issledovanij Karel’skogo nauchnogo centra Rossijskoj akademii nauk. Petrozavodsk, 2015. 114 s.


Review

For citations:


Brekhov O.M., Zvonareva G.A., Ryabov V.V. Features of development and analysis of the simulation model of a multiprocessor computer system. Open Education. 2017;(3):48-56. (In Russ.) https://doi.org/10.21686/1818-4243-2017-3-48-56

Views: 1199


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-4243 (Print)
ISSN 2079-5939 (Online)