Preview

Open Education

Advanced search

Energetically self-sufficient robot group study kit

https://doi.org/10.21686/1818-4243-2017-2-68-77

Abstract

The article considers the project of educational and research software and hardware kit designed for use in case-based educational project activities based on the theme of energetically autonomous robots. An important feature of the complex is its interdisciplinarity since robotics combines many fields of science and technology — mechanical design, electronics, programming, elements of artificial intelligence, energy science and others. Students can receive basic knowledge in these areas as well as gain practical skills in solving real problems that require a convergent approach. The kit serves as an experimental basis that allows to study intricacies of robot control and its hardware and software design while making structural changes, including using different power units: solar, fuel, thermoelectric and others. Power units (converters and the various sources of renewable energy) may be considered both from the theoretical point of view, i.e. from the principles of their functioning and from the practical aspect — studying their practical application in real systems. Another important aspect of the system is the development of software architecture for a robot and for a team of robots as well as studying the interactions between them. In addition to performing the target task, ancillary tasks such as maintaining the battery level, communication with other team members in a multi-agent system, should be considered in the control algorithm of the robot, which allows to study the distribution of priorities between these objectives, as shown in the example of multicriteria optimization. The prototype of the kit and its usage according to the described approach have been partially validated by conducting computational experiments with algorithms based on different search methods (random search, closest source and multi-criteria optimization methods), multi-agent paradigm and adaptive control which show a variety of possible approaches and illustrate the process of students' work. The hardware base has been validated by testing various energy modules and assembling robot using the modules of the proposed kit. The results showed the possibility and potential of studying a variety of interdisciplinary themes using the developed hardware and software complex.

About the Authors

M. A. Rovbo
National Research Centre “Kurchatov Institute”
Russian Federation
research-engineer


A. A. Malyshev
National Research University Higher School of Economics; National Research Centre “Kurchatov Institute”
Russian Federation
research-engineer


References

1. Makhotin D.A. Proektnyy podkhod k tekhnologii obucheniya v sisteme vysshego professional’nogo obrazovaniya // Podgotovka spetsialistov v oblasti menedzhmenta kachestva. 2005. № 1. Pp. 11–21. (in Russ.).

2. Feshchenko E.M. Proektnyy podkhod i ego rol’ v formirovanii professional’noy kompetentnosti pedagoga-psikhologa // Obrazovanie i obshchestvo. 2008. № 6. Pp. 54–59. (in Russ.).

3. Petegem V.V., Kamenski Kh. Obrazovanie dlya innovatsiy (primenenie peredovoy metodiki prepodavaniya v YuFU). Yuzhnyy Federal’nyy universitet, 2009. 120 P. (in Russ.).

4. Pereverzev L.B. Proektnyy podkhod k obrazovatel’nym problemam // Metodologiya uchebnogo proekta. Sbornik statey. Moskva: MIOO, 2001. (in Russ.).

5. Pavlovskaya S.V., Sirotkina N.G. Analiz opyta proektnoy deyatel’nosti pri prepodavanii upravlencheskikh distsiplin v vuzakh // Sovremennye problemy nauki i obrazovaniya. 2014. № 4. (in Russ.).

6. Safonova E.I. Rekomendatsii po ispol’zovaniyu innovatsionnykh obrazovatel’nykh tekhnologiy v uchebnom protsesse. Moskva: Rossiyskiy gosudarstvennyy gumanitarnyy universitet, 2011. 71 P. (in Russ.).

7. Adib R., Murdock H.E., Appavou F., Brown A., Epp B., Leidreiter A., Lins C., Murdock H.E., Musolino E., Petrichenko K., Farrell T.C., Krader T.T., Tsakiris A., Sawin J.L., Seyboth K., Skeen J., Sovacool B., Sverrisson F., Martinot E. Renewables 2016 Global Status Report // Global Status Report. RENEWABLE ENERGY POLICY NETWORK FOR THE 21st CENTURY (REN21), 2016. 272 P.

8. Mathias. Solar Cell Efficiency World Record Set By Sharp – 44.4% [Electronic resource]. 2013. Available at: http://cleantechnica.com/2013/06/23/ solar-cell-efficiency-world-record-set-by-sharp-44-4.

9. Schultz, O., A. Mette, R. Preu, Glunz S.W. Silicon solar cells with screen-printed front side metallization exceeding 19% efficiency // 22nd European Photovoltaic Solar Energy Conference and Exhibition. 2007. Pp. 980–983.

10. Seeed Studio. «1w Solar Panel 80*100» [Electronic resource]. 2010.

11. Krivobokov V.P., Soguchov N.S., Solov’ev A.A. Elektrokhimiya toplivnykh elementov. Izdatel’stvo Tomskogo politekhnicheskogo universiteta, 2008. Pp. 127-138. (in Russ.).

12. Gotovtsev P.M., Vorob’ev V.V., Migalev A.S., Badranova G.U., Gorin K.V., A.N. Reshetilov, R.G. Vasilov. Bioenergetika dlya avtonomnykh robotov. Perspektivnye resheniya i sovremennoe sostoyanie. // Vestnik biotekhnologiy i fiziko-khimicheskoy biologii imeni Yu.A. Ovchinnikova. 2015. Vol. 11, № 2. Pp. 49–58. (in Russ.).

13. Kanwal A., Wang S.C., Ying Y., Cohen R., Lakshmanan S., Patlolla A., Iqbal Z., Thomas G.A., Farrow R.C. Substantial power density from a discrete nano-scalable biofuel cell // Electrochem. commun. 2014. Vol. 39. Pp. 37–40. DOI: 10.1016/j. elecom.2013.12.010.

14. Du Z., Li H., Gu T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy // Biotechnol. Adv. 2007. Vol. 25, № 5. Pp. 464–482. DOI: 10.1016/j.biotechadv.2007.05.004.

15. Rosenbaum M.A., Franks A.E. Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives // Appl. Microbiol. Biotechnol. 2014. Vol. 98. S. 509–518. DOI: 10.1007/s00253-013-5396-6.

16. Elouarzaki K., Haddad R., Holzinger M., Goff A. Le, Thery J., Cosnier S. MWCNT-supported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O2 fuel cells // J. Power Sources. 2014. Vol. 255. Pp. 24–28. DOI: 10.1016/j.jpowsour.2013.12.109.

17. Podinovskiy V.V., Potapov M.A. Metod vzveshennoy summy kriteriev v analize mnogokriterial’nykh resheniy: pro et contra // Matematicheskie metody i algoritmy resheniya zadach biznes-informatiki. 2013. Vol. 25, № 3. Pp. 41–48. (in Russ.).

18. Barca J.C., Sekercioglu Y.A. Swarm robotics reviewed // Robotica. 2013. Vol. 31, № 3. Pp. 345–359. DOI: 10.1017/S026357471200032X.

19. Kernbach S. Collective Energy Foraging of Robot Swarms and Robot Organisms // Arxiv Prepr. arXiv1111.0873. 2011.

20. Sindi Y., Winfield, Melhuish S. A feasibility study for energy autonomy in multi robot search and rescue operations // Advances in Mobile Robotics: Proceedings of the Eleventh International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines. Coimbra: World Scientific Publishing Co, 2008. Pp. 1146–1153. DOI: 10.1142/9789812835772_0137.

21. Karpov V.E. Modeli sotsial’nogo povedeniya v gruppovoy robototekhnike // Upravlenie bol’shimi sistemami. 2016. № 59. Pp. 165–232. (in Russ.).

22. Humza Qadir R. Self-Sufficiency of an Autonomous Self-Reconfigurable Modular Robotic Organism. Universitat des Saarlandes, 2013.

23. Dai H. Adaptive Control in Swarm Robotic Systems // Hilltop Rev. 2009. Vol. 3, № 1.

24. Raja H., Scholz O. A Case Study on SelfSufficiency of Individual Robotic Modules in an Arena With Limited Energy Resources // ADAPTIVE 2011: The Third International Conference on Adaptive and Self-Adaptive Systems and Applications. Rome, 2011. Pp. 29–35.

25. Rovbo M.A. Raspredelenie roley v geterogennom murav’ino-podobnom kollektive // Pyatnadtsataya natsional’naya konferentsiya po iskusstvennomu intellektu s mezhdunarodnym uchastiem (KII-2016). Smolensk, 2016. Vol. 2. Pp. 363–371. (in Russ.).

26. North M.J., Collier N.T., Ozik J., Tatara E.R., Macal C.M., Bragen M., Sydelko P. Complex adaptive systems modeling with Repast Simphony // Complex Adapt. Syst. Model. Springer Berlin Heidelberg, 2013. Vol. 1, № 1. Pp. 1–26. DOI: 10.1186/2194-3206-1-3.


Supplementary files

1. Перечень подрисуночных подписей
Subject
Type Исследовательские инструменты
Download (641KB)    
Indexing metadata ▾
2. Рис. 2 Программно-аппаратная архитектура робота
Subject
Type Исследовательские инструменты
View (68KB)    
Indexing metadata ▾
3. Рис. 1 Модульное представление робота
Subject
Type Исследовательские инструменты
View (19KB)    
Indexing metadata ▾
4. Рис. 5 Выход на установившуюся скорость сбора энергии
Subject
Type Исследовательские инструменты
View (337KB)    
Indexing metadata ▾
5. Рис. 3 Эффективность алгоритмов выбора источника энергии
Subject
Type Исследовательские инструменты
View (176KB)    
Indexing metadata ▾
6. Рис. 4 Сбор пищи (серые квадраты) муравьями (тёмные точки) с использованием направленных феромонов (продолговатые отметки)
Subject
Type Исследовательские инструменты
View (175KB)    
Indexing metadata ▾

Review

For citations:


Rovbo M.A., Malyshev A.A. Energetically self-sufficient robot group study kit. Open Education. 2017;(2):68-77. (In Russ.) https://doi.org/10.21686/1818-4243-2017-2-68-77

Views: 4253


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-4243 (Print)
ISSN 2079-5939 (Online)