PhaPl: software to plot and research phase portraits automatically
https://doi.org/10.21686/1818-4243-2017-3-66-72
Abstract
The article aims to document PhaPl that’s a teaching software to plot and research phase portraits of autonomous systems of 2 differential equations on a plane. Interactive computer teaching materials allow to demonstrate tasks describing large number of states of investigated systems clearly and involving students into solving. Plotting and research of phase portraits of autonomous system of 2 differential equations is an important task in “Differential equations” course and other courses that use dynamic systems. The software allows to visualize phase portraits and to perform analysis easily. Plotting of phase portraits needs a lot of routine computations. The software allows teacher to focus on analytical research of autonomous systems of 2 differential equations. The software supports linear and nonlinear autonomous systems of 2 differential equations. The software differs is very different compared with previously known programs: it has very easy graphical user interface and it gives clarity because it demonstrates all steps of solution. To get the full solution, it is enough to just enter a system to research. Initial conditions to plot phase trajectories are chosen automatically. Graphical representation of the phase plane is interactive and allows user to draw additional trajectories with specified initial conditions by mouse hovering over the phase plane. The software is based on popular Free Software (Maxima, Qt4, LaTeX) and it is Free Software itself, thus it is accessible to wider audience, including online students. The software is portable and works on Windows and Linux operating systems. The article describes advantages, disadvantages and peculiar properties of the software, and some aspects of teaching experience. The software is deployed in Moscow State University of Economics, Statistics, and Informatics (MESI), Lomonosov Moscow State University (MSU) since 2013, and in Plekhanov Russian University of Economics since 2016. Further development will be focused on reduction of binary size of the software, portability improvements, and number of analytical results showed.
Keywords
About the Author
A. A. CherepanovRussian Federation
Postgraduate student, Academic Department
References
1. Lapshin V. P., Turkin I. A. Modelirovanie dinamiki formoobrazuyuschih dvizhenij pri sverlenii glubokih otverstij malogo diametra // Vestnik Adyigejskogo gosudarstvennogo universiteta. Seriya 4: Estestvenno-matematicheskie i tehnicheskie nauki. 2012. № 4 (110) Pp.226-233. (in Russ.) URL: http://cyberleninka.ru/article/n/modelirovanie-dinamiki-formoobrazuyuschih-dvizheniy-pri-sverlenii-glubokih-otverstiy-malogo-diametra
2. Samohin A. V., Dement’ev Yu. I. Galileevoinvariantnyie resheniya uravneniya KdV-Byurgersa i nelinejnaya superpozitsiya udarnyih voln // Nauchnyij vestnik MGTU GA. 2016. № 224 (2) Pp. 24–32.(in Russ.) URL: http://cyberleninka.ru/article/n/galileevo-invariantnye-resheniya-uravneniya-kdv-byurgersa-i-nelineynaya-superpozitsiya-udarnyh-voln
3. Agureev I.E., Atlas E.E. I spol’zovanie printsipov nelinejnoj dinamiki pri issledovanii dissipativnyih modelej transportnyih protsessov v biofizicheskih sistemah // VNMT. 2007. № 1. Pp. 41–43. (in Russ.) URL: http://cyberleninka.ru/article/n/ispolzovanie-printsipov-nelineynoy-dinamiki-priissledovanii-dissipativnyh-modeley-transportnyhprotsessov-v-biofizicheskih-sistemah
4. Barinova E.V., Timbaj I.A. Issledovanie ploskogo dvizheniya otnositel’no tsentra mass spuskaemogo apparata s trigarmonicheskoj momentnoj harakteristikoj pri vhode v atmosferu // Vestnik SGAU. 2010. № 1 Pp. 9–19. (in Russ.) URL: http://cyberleninka.ru/article/n/issledovanie-ploskogo-dvizheniyaotnositelno-tsentra-mass-spuskaemogo-apparata-strigarmonicheskoy-momentnoy-harakteristikoy-pri
5. Kostromina O.S., Morozov A.D. O predel’nyih tsiklah v asimmetrichnom uravnenii DyuffingaVan-der-Polya // Vestnik NNGU. 2012. № 1-1 Pp. 115–121. (in Russ.) URL: https://elibrary.ru/item. asp?id=17338514
6. Astashova I.V. Kachestvennyie svojstva reshenij kvazilinejnyih obyiknovennyih differentsial’nyih uravnenij // Kachestvennyie svojstva reshenij differentsial’nyih uravnenij i smezhnyie voprosyi spektral’nogo analiza / pod red. I. V. Astashovoj. M.: YuNITI-DANA, 2012. Pp. 22–288. (in Russ.) URL: https://elibrary.ru/item.asp?id=20908128
7. Astashova I.V. Primenenie dinamicheskih sistem k issledovaniyu asimptoticheskih svojstv reshenij nelinejnyih differentsial’nyih uravnenij vyisokih poryadkov. Sovremennaya matematika i ee prilozheniya // Sovremennaya matematika i ee prilozheniya. – 2003. – T. 8. – Pp. 3–33. (in Russ.) URL: https://elibrary.ru/item.asp?id=26344653
8. Astashova I. On asymptotic classification of solutions to nonlinear regular and singular third- and fourth-order differential equations with power nonlinearity // Differential and Difference Equations with Applications. — Springer Proceedings in Mathematics & Statistics. – New York, N.Y., United States: New York, N.Y., United States, 2016. – P. 191–204. [DOI: 10.1007/978-3-319-32857-7]
9. Vaidyanathan S. Lotka-Volterra population biology models with negative feedback and their ecological monitoring //Int J PharmTech Res. – 2015. – T. 8. – № 5. – Pp. 974–981. URL: https:// pdfs.semanticscholar.org/8086/92dd5826922b7be83 4c05e7a41994bb3e135.pdf
10. Townsend J.T., Busemeyer J.R. Approachavoidance: Return to dynamic decision behavior // Cognitive Processes the Tulane Flowerree Symposia on Cognition. – 2014. – Pp. 107. URL: http:// www.indiana.edu/~psymodel/papers/towbus89.pdf
11. Cherepanov A.A. Programma dlya postroeniya i issledovaniya fazovyih portretov na osnove programmnyih komponentov s otkryityim ishodnyim kodom // Teoreticheskie i prikladnyie aspektyi matematiki, informatiki i obrazovaniya: Materialyi Mezhdunarodnoj nauchnoj konferentsii, 16–21 noyabrya 2014 g., g. Arhangel’sk. – Pp. 594–598. (in Russ.)
12. Morozov A.D., Dragunov T.N. Vizualizatsiya i analiz invariantnyih mnozhestv dinamicheskih sistem. Moskva-Izhevsk: Institut komp’yuternyih issledovanij, 2003. 304 p. (in Russ.) URL: https:// elibrary.ru/item.asp?id=19448609
13. Astashova I.V., Nikishkin V.A. Praktikum po kursu “Differentsial’nyie uravneniya”. Uchebnoe posobie. Izd. 3-e, ispravlennoe. M.: Izd. tsentr EAOI, 2010. 94 p., il. (in Russ.) URL: http://new. math.msu.su/diffur/main_du_2010.pdf
14. Ortega Dzh., Pul U. Vvedenie v chislennyie metodyi resheniya differentsial’nyih uravnenij/Per. S angl.; Pod red. A. A. Abramova. – M.: Nauka. Gl. red. fiz.-mat. lit., 1986. – 288 p. (in Russ.) URL: http://www.rk5.msk.ru/Knigi/ChMet/Ortega.pdf
15. Wheeler, David A. “Why Open Source Software / Free Software (OSS/FS, FOSS, or FLOSS)? Look at the Numbers!” [Electronic resource] 2014. URL: http://www.dwheeler.com/oss_fs_why.html
Review
For citations:
Cherepanov A.A. PhaPl: software to plot and research phase portraits automatically. Open Education. 2017;(3):66-72. (In Russ.) https://doi.org/10.21686/1818-4243-2017-3-66-72